Cirklar vs trianglar och kvadrater, del 3

I en föregående text avfärdades cirklar och sfärer som kandidater till att vara de enklaste geometriska objekten i två respektive tre dimensioner. Samtidigt finns det något tillfredsställande enkelt med både cirkeln och sfären. Många tilltalas av det jämna och mjuka, särskilt jämfört med de vassa kanterna hos exempelvis trianglar eller rektanglar.

Ett argument mot sfärer och cirklar är vad som händer då de generaliseras. Givetvis finns ett stringent teoretiskt bygge kring dessa objekt. Sfären kallas då en 2-sfär, cirkeln kallas en 1-sfär. Generaliserat nedåt i dimensionerna så får vi en 0-sfär i en dimension och för att konstruktionen ska hållas samman blir 0-sfären något tråkigt en linje mellan två punkter.

Det knöliga här jämfört med både kvadrater och trianglar är att det är svårt att förstå hur de enklare objekten i lägre dimensioner kan användas för att bilda objekten i högre dimensioner; Med några en-dimensionella streck bildas en triangel i två dimensioner, och några tvådimensionella trianglar kan användas för att bygga en pyramid. Det går med hård ansträngning till och med att få en viss uppfattning om hur pyramider kan användas för att konstruera 4-simplex. Ungefär samma gäller för kvadrater och kuber.

Men hur konstruerar du en 1-sfär (en cirkel) med 0-sfärer (en linje)? Eller en 2-sfär (ett klot eller en sfär) med 1-sfärer. Det går. Absolut. Men det faller sig inte alls lika enkelt, åtminstone inte för undertecknad.

Om inte förr börjar något skava nu: ”åtminstone inte för undertecknad”. Vi är väl bekanta med att olika personer har olika fallenhet för olika sätt att tänka. Den ena sägs vara begåvad i musik, den andre att spela fotbollen och en tredje i matematik. Pröva därför följande tanke:

Under lång tid har personer med fallenhet för matematik på ett visst sätt fått definiera vad matematik är och hur undervisning i matematik ska bedrivas. Men tänk nu om detta stänger ute personer från matematiken? Tänk om det finns personer som, bara för att ta ett exempel, har lättare att se hur en 2-sfärer konstrueras med 1-sfärer, men som samtidigt har svårare att ta till sig hur en 3-simplex konstrueras med 2-simplex.

Undertecknads anekdotiska erfarenhet av detta är likartad: Vid undervisning på Chalmers och Göteborgs Universitet har jag träffat på flera personer som exempelvis föreföll ha lättare att ta till sig svårare begrepp än enkla. Samtidigt byggs matematisk undervisning enligt sten-på-sten-princip: Tycker du att liggande stolen är konstig så kommer du att aldrig att få resonera om topologier eller Manhattan-metriker. Bara för att nämna något.

Det som är potentiellt oroande och samtidigt spännande, är om det finns personer som döms ut, inte minst av sig själva, som matematiskt obegåvade, men som skulle kunna föra matematiken framåt.

/David Armini

Lämna ett svar

E-postadressen publiceras inte. Obligatoriska fält är märkta *